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Monkey J Maze Main 

2,3 

100 40 0 100 - - 10 - 0.98 5 

Participant T5 

Center-out 

Main 3 64 20 3 64 - - 250 - 0.95 5 

Monkey P 

Multi-session 

Main 4 100 16 0 100 - - 500 - 0.98 10 

Monkey P 

Single-session 

Main 4 100 16 0 100 - - 500 - 0.98 10 

Monkey J 

CursorJump 

Main 5 128 50 4 150 100 128 25 25 0.98 10 

Monkey J 

Center-out 

Main 6 128 50 4 150 100 128 25 25 0.98 2 

Participant T7 

Center-out 

Main 6 64 20 3 64 64 128 250 250 0.95 5 

Lorenz attractor Supp. 2 64 3 0 64 - - 250 - 0.95 a.u. 

Chaotic RNN Supp. 3 200 20 0 200 - - 2000 - 0.95 a.u. 

Input pulses Supp. 

6,7 

200 20 1 200 128 128 2000 0 0.95 a.u. 

RNN Integrator Supp. 8 200 20 1 128 128 128 2000 0 0.95 a.u. 

 

Supplementary Table 1. Important hyper-parameters of LFADS models. Listed here are the 

most important LFADS parameters, relating primarily to model capacity. ’N’ - number of units 

in the generator, ’F’ - number of factors, |𝐮𝐭| - number of inferred inputs, ’E’ - encoder, ’C’ - 

controller, ’G’ - generator, ’KP’ - keep probability in dropout layers, ’BS’ - bin size (ms).  



Model Figure Electrode type Signal post-processing 

Monkey J Maze Main 1, 2, 3 Utah array threshold crossings, spike 

sorted 

Participant T5 Center-out Main 3 Utah array threshold crossing 

Monkey P Single-session Main 4 v-probe threshold crossing 

Monkey P Multi-session Main 4 v-probe threshold crossing 

Monkey J CursorJump Main 5 Utah array threshold crossing 

Monkey J Center-out Main 6 Utah array threshold crossing 

Participant T7 Center-out Main 6 Utah array threshold crossing 

 

Supplementary Table 2. Signal collection technology and spike detection methods. 

  



Supplementary Note: Synthetic datasets 

Summary of synthetic datasets 

We chose a variety of synthetic examples in an effort to show LFADS’s ability to infer 

informative representations for dynamical systems of varying complexity. We ordered the 

synthetic examples roughly by complexity to build intuition. The examples are, in order, 

1. The pendulum example (Supp. Fig. 1) - a cartoon (no actual data), simply intended to 

impart intuition using a well-known and tangible physical system. 

2. The Lorenz model (Supp. Fig. 2, Supp. Table 1) - this simple model is now becoming 

standard in the field (e.g., 1,2), as it is a simple and well-known example of a nonlinear, 

chaotic dynamical system, and easy to understand and visualize due to its 3D state space. 

3. A synthetic RNN example with random connections and without input (Supp. Fig. 3) - this 

creates a much more complex high-dimensional dynamical system, intended to differentiate 

our method from common methods in the field that have difficulty modeling high-

dimensional, highly nonlinear dynamics. This RNN does not have the same architecture as 

that used in LFADS. 

4. A synthetic RNN example with simple pulse inputs (Supp. Figs. 7,8) - this provides a clear 

demonstration of the ability of LFADS to decompose an observed time series into both 

dynamics and inputs. This RNN does not have the same architecture as that used in LFADS. 

5. A synthetic RNN trained to perform an integration-to-bound task, given a noisy 1-D input 

(Supp. Fig. 9). Integration-to-bound is a common model of decision-making in systems 

neuroscience. This example shows the utility of LFADS not only in modeling a network 

that is trained to perform a task, but also shows that LFADS can infer inputs in networks 

that are performing meaningful computations. This RNN does not have the same 

architecture as that used in LFADS. 

Lorenz system 

The Lorenz system is a set of nonlinear equations for three dynamic variables. Its limited 

dimensionality allows its entire state space to be visualized. The evolution of the system’s state is 

governed as follows 

𝑦̇1 = 𝜎(𝑦2 − 𝑦1) (1)
𝑦̇2 = 𝑦1(𝜌 − 𝑦3) − 𝑦2 (2)
𝑦̇3 = 𝑦1𝑦2 − 𝛽𝑦3. (3)

 

We used the standard parameter values known for inducing chaos, 𝜎 = 10, 𝜌 = 28, and 𝛽 =
8/3, and used Euler integration with 𝛥𝑡 = 0.006. As in 1, we simulated a population of neurons 

with firing rates given by linear read-outs of the Lorenz variables using random weights, 

followed by an exponential nonlinearity. Spikes from these firing rates were then generated by a 

Poisson process. 

Our synthetic dataset consisted of 65 conditions, with 20 trials per condition. Each condition was 

obtained by starting the Lorenz system with a random initial state vector and running it for 1s. 



Twenty different spike trains were then generated from the firing rates for each condition. 

Models were trained using 80% of the data (16 trials/condition) and evaluated using 20% of the 

data (4 trials/condition). While this simulation is structurally quite similar to the Lorenz system 

used in 1, we purposefully chose parameters that made the dataset more challenging. Specifically, 

relative to 1, we limited the number of observations to 30 simulated neurons instead of 50, 

decreased the baseline firing rate from 15 spikes/sec to 5 spikes/sec, and sped up the dynamics 

by a factor of 4. 

Chaotic RNNs as data generators 

We tested the performance of each method at inferring the dynamics of a more complex 

nonlinear dynamical system, a fully recurrent nonlinear neural network with strong coupling 

between the units. We generated a synthetic dataset from an 𝑁-dimensional continuous time 

nonlinear, so-called, “vanilla" RNN, 

𝜏 𝐲̇(𝑡) = −𝐲(𝑡) + 𝛾 𝐖𝑦tanh(𝐲(𝑡)) + 𝐁 𝐪(𝑡). (40) 

This makes a compelling synthetic case study for our method because many recent studies of 

neuroscientific data have used vanilla RNNs as their modeling tool (e.g. 3–7). It should be 

stressed that the vanilla RNN used as the data RNN here does not have the same functional form 

as the network generator used in the LFADS framework, which is a GRU (see section 1.7), 

although both have continuous variables and are not spiking models. For experiments in Supp. 

Fig. 3, we set 𝐁 = 𝐪 = 0, but we included an input for experiments in Supp. Fig. 6. 

The elements of the matrix 𝐖𝑦 were drawn independently from a normal distribution with zero 

mean and variance 1/𝑁 . We set 𝛾 to either 1.5 or 2.5, both of which produce chaotic dynamics 

at a relatively slow timescale compared to 𝜏 (see 3 for more details). The smaller 𝛾 value 

produces “gentler" chaotic activity in the data RNN than the larger value. Specifically, we set 

𝑁 = 50, 𝜏 = 0.025 s and used Euler integration with 𝛥𝑡 = 0.01 s. Spikes were generated by a 

Poisson process with firing rates obtained by scaling each element of tanh(𝐲(𝑡)) to take values 

in [0,1], and then used as the rate in a Poisson process to give rates lying between 0 and 30 

spikes/s. 

Our dataset consisted of 400 conditions obtained by starting the data RNN at different initial 

states with elements drawn from a normal distribution with zero mean and unit variance. Firing 

rates were then generated by running the data RNN for 1 s, and 10 spiking trials were produced 

for each condition, yielding a total of 4,000 spiking trials. Models were trained using 80% of the 

data (8 trials/condition) and evaluated using 20% of the data (2 trials/condition). 

Inferring pulse inputs to a chaotic RNN 

We tested the ability of LFADS to infer the input to a chaotic RNN (Supp. Figs. 6,7). In general, 

the problem of disambiguating dynamics from inputs is ill-posed, so we encouraged the 

dynamics to be as simple as possible by including an 𝐿2 regularizer in the LFADS network 

generator (see Supplementary Table 1). We note that weight regularization is a standard 

technique that is nearly universally applied to neural network architectures. 

Focusing on Supp. Fig 6, we studied the synthetic example of inferring the timing of a delta 

pulse input to a randomly initialized RNN. To introduce an input into the data RNN, the 

elements of 𝐁 were drawn independently from a normal distribution with zero mean and unit 



variance. During each trial, we perturbed the network by delivering a delta pulse of magnitude 

50, 𝑞(𝑡) = 50𝛿(𝑡 − 𝑡𝑝𝑢𝑙𝑠𝑒), at a random time 𝑡𝑝𝑢𝑙𝑠𝑒 between 0.25s and 0.75s (the full trial 

length was 1s). This pulse affects the underlying rates produced by the data RNN, which 

modulates the spike generation process. To test the ability of the LFADS model to infer the 

timing of these input pulses, we included in the LFADS model an inferred input with 

dimensionality of 1. We explored the same two values of 𝛾 as in the synthetic example to model 

chaotic RNN dynamics, 1.5 and 2.5. Other than adding the input pulses, the data for input-pulse 

perturbations were generated as in the first data RNN example described above. 

After training, which successfully inferred the firing rates, we extracted inferred inputs from the 

LFADS model (eqn. 15) by running the system 512 times for each trial, and averaging, defining 

𝐮𝑡 = ⟨𝐮𝑡⟩𝐠0,𝐮1:𝑇
. To see how the timing of the inferred input was related to the timing of the 

actual input pulse, we determined the time at which 𝐮𝑡 reached its maximum value. 

Inferring white noise input in an RNN trained to integrate to bound 

We tested the ability of LFADS to infer the input to a vanilla RNN trained to integrate a noisy 

signal to a +1 or −1 bound. Weight matrices for this "data simulation RNN" were drawn 

independently from a Gaussian distribution with zero mean and variance 0.64/𝑁, and 𝐿2 

regularization was used during training. The noisy input signal was drawn from a Gaussian 

distribution with zero mean and variance 0.0625. 800 conditions were generated with white 

noise inputs, and 5 spiking trials were generated per condition. This resulted in 4,000 1s spiking 

trials. 3,200 trials were used for training and 800 trials were used for validation. 

After training LFADS on the integrate-to-bound data (simulated as above), inferred inputs (𝐮𝑡) 

for a given trial were extracted by taking 1024 samples from the (𝐮𝑡) posterior distribution 

produced by LFADS, and then averaging. These inferred inputs were then compared (using 𝑅2) 

with the real inputs to the integrate-to-bound model, which were saved down previously during 

training. 

  



Supplementary Note: LFADS-related work in machine learning literature 

Recurrent neural networks have been used extensively to model neuroscientific data (e.g. 3–7), 

but the networks in these studies were all trained in a deterministic setting. An important recent 

development in deep learning has been the advent of the variational auto-encoder 8,9, which 

combines a probabilistic framework with the power and ease of optimization of deep learning 

methods. VAEs have since been generalized to the recurrent setting, for example with variational 

recurrent networks10, deep Kalman filters11, and the RNN DRAW network12. 

There is also a line of research applying probabilistic sequential graphical models to neural data. 

Recent examples include PLDS13, switching LDS14, GCLDS15, and PfLDS16. These models 

employ a linear Gaussian dynamical system state model with a generalized linear model (GLM) 

for the emissions distribution, typically using a Poisson process. In the case of the switching 

LDS, the generator includes a discrete variable that allows the model to switch between linear 

dynamics. GCLDS employs a generalized count distribution for the emissions distribution. 

Finally, in the case of PfLDS, a nonlinear feed-forward function (neural network) is inserted 

between the LDS and the GLM. 

Gaussian process models have also been explored. GPFA17 uses Gaussian processes (GPs) to 

infer a time constant with which to smooth neural data and has seen widespread use in 

experimental laboratories. More recently, the authors of 1 have used a variational approach 

(vLGP) to learn a GP that then passes through a nonlinear feed-forward function to extract the 

single-trial dynamics underlying neural spiking data. 

Additional work applying variational auto-encoding ideas to recurrent networks can be found in 
18. The authors of 11 have defined a very general nonlinear variational sequential model, which 

they call the Deep Kalman Filter (DKF). The authors of 19 applied recurrent variational 

architectures to problems of control from raw images. Finally, 20  applied dynamical variational 

ideas to sequences of images. Due to the generality of the equations in many of these references, 

LFADS is likely one of many possible instantiations of a variational recurrent network applied to 

neural data (in the same sense that a convolutional network architecture applied to images is also 

a feed-forward network, for example). 

The LFADS model decomposes the latent code into an initial condition and a set of innovation-

like inferred inputs that are then combined via an RNN to generate dynamics that explain the 

observed data. Recasting our work in the language of Kalman filters, our nonlinear generator is 

analogous to the linear state estimator in a Kalman filter, and we can loosely think of the inferred 

inputs in LFADS as innovations in the Kalman filter language. However, an “LFADS 

innovation” is not strictly defined as an error between the measurement and the read-out of the 

state estimate. Rather, the LFADS innovation may depend on the observed data and the 

generation process in extremely complex ways. 
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